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Abstract

We extend the Petit Bang Model of Feix, Minneau and Muriel, a one-dimensional

gravitational system, to calculate the Hubble parameter and introduce a possible

explanation for the origin of rapid inflation.
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Introduction

There  is  some  controversy  about  multiple  measurements  of

the Hubble constant [1]. There does not seem to be a unique

value  for  the  Hubble  constant,  hence  there  is  a  need  to  find

out  how  the  Hubble  constant  arises.  The  one  dimensional

model described here shows how a non-unique Hubble “cons-

tant”  may  arise.  We  show  how  different  Hubble  constants

could  arise  using  the  highly  simplified  Petit  Bang  model,  a

one-dimensional system introduced by Minneau, et al. [2]. In

the original model we explain how structure formation could

arise  from  a  primordial  explosion  [3].  In  that  model,  it  was

suggested that structure formation could arise without invok-

ing  primordial  fluctuations.  In  this  work,  we  show  how  the

Hubble parameter arises.  This pedagogical  model introduces

the idea that  rapid inflation may be due to an application of

the zero-point energy or momentum of quantum mechanics

as explained in Section 5.

Review of Time Evolution of the Single
Particle Distribution Function

We start in three dimensions. Let f (r, p, t) be the single-parti-

cle distribution function of a many-body system. It represents

the probability that at a particle in location r possesses the mo-

mentum p at time t. We use the phase space variables r=(x, y,

z), p = (px.py,  pz.) in keeping with kinetic theory. Using fac-

tored initial distributions for the initial data, that is, f2 (r, r') =

f1 (r)f1(r'), etc., we start with the equation derived in [4,5]:

The  distribution  function  evolves  from  initial  data  on  the

right hand side. By the nature of the infinite series, each term

in the series comes to the order of 

Equation.  (1)  drops an infinite  number of  terms of  order

 for the following reason: we will cal-

culate averages of (1,p,p2). Using integration by parts, the con-

tribution of an infinite number of terms in addition to above

is zero, effectively truncating the series to six terms due to the

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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vanishing of the momentum distribution at the boundary of

momentum space. We use the operator  is

the average particle density.  is a general form of

the pair-potential of two particles located at . The exis-

tence of this pair-potential distinguishes this approach from

the usual continuum model of hydrodynamics. We use Carte-

sian  coordinates  and  the  convention  of  repeated  indices.

 i s  t h e  s h i f t  o p e r a t o r

.

The first term of Equation (1) describes an ideal gas.

We note that the third, fourth and fifth terms of Equation (1)

contain the integral

For  an initially  uniform system,  or  a  system symmetric  with respect to the origin at r = 0, the integral is zero and Equation

(1) reduces to

Now we reintroduce our 1990 model.  The Petit  Bang Model is one-dimensional; Equation (2) reduces to an exact time evo-

lution equation below:

The field velocities of hydrodynamics are calculated from Equ-

ation (1) or its simplifications like Equation (3). From earlier

works  [4,  5]  but  taking  only  the  ballistic  or  first  term of  the

time evolution equation,

Our variables of interest in our model are:

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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In contrast to conventional continuum mechanics, the parti-

cle mass is important.

We analyze each of the two terms in Equation (3). Two terms

remain:

Now we use the pair potential for a one dimensional gravita- tional gas

Equations  (7,  8)  may  be  evaluated  with  the  following  initial data

Representing an initial explosion with momentum po. When

P0=0, the system collapses from its Gaussian spatial distribu-

tion, a feature that we will discuss in Section 4.

The equations may be evaluated quickly:

To arrive  at  a  closed analytic  expression,  we have  integrated

intermediate expressions in x' from  to  to represent

a system with a size 

The  expressions  for  the  density  are  obtained  by  integrating

over p, yielding

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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To  check  if  the  densities  are  properly  normalized,  integrate Equations (13, 14) over the momentum to yield the total mass

contributions

m2 is zero, even if plots may show negative and positive con-

tributions to the total density

We show the  density  contributions  of  the  two  terms  in  Fig-

ures.  (1,  2)  using  the  parameters  m=1,g  =

4,b=2,c=1,no=1,a=4,L=1;T=1,po=4.

Figure 1: Density contribution from first term.

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com


Page 6 SMP Arch Astron Astrophys

SCIMED PRESS | www.scimedpress.com Volume 1 | Issue 1

Figure 2: Density contribution from second term.

Figure 3: Total density.

We  may  integrate  the  density  contributions  over  all  x  and

find  that  the  mass  contribution  from  the  first  term  is

and zero from the second term, reassuring us

that the time evolution equations preserve normalization.

In Search of Hubble Behavior

We now calculate the velocity of “galaxies” in this exploding

system as a function of time by averaging p/m using the distri-

bution function. Integrating over all momentum,

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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We  display  the  velocity  of  the  molecules,  or  “galaxies”  as  a

function of the coordinate x and time or epoch in Figures. 4,

5, 6. The derivative of velocity with respect to x is the Hubble

parameter. This parameter does not necessarily remain cons-

tant.  But for our model,  there is  indeed a temporary Hubble

behavior near the origin as shown in Figure 4.

Figure 4: Appearance of Hubble behavior near the origin. Elsewhere, this behavior is not sustained.

In Figure 4, the vertical axis is the velocity as a function of lo-

cation.  Hubble  expansion  is  indeed  exhibited,  but  only  near

the origin.

Next, we calculate the derivative of velocity with respect to x

to give

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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This Hubble parameter varies with time as shown in Figure 5.

Hubble  behavior  occurs  near  the  origin  and  only  for  short

times. Acceleration occurs near the origin. Around the origin,

acceleration or increase of  the Hubble constant occurs with-

out invoking dark energy, it is simply due to the initial condi-

tion using classical mechanics for non-zero po. We will com-

ment on this later in Section 4.

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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Figure 5: The Hubble parameter, in the vertical axis, for regions away from the origin. We assign the value g =10 to highlight the nature of

the plot. There is no single value of the Hubble parameter. Deceleration occurs eventually after a short period of expansion.

Petit Bang Version of Rapid Inflation

We magnify the plot of Figure. 5 near the origin, resulting in

Figure. 6. Note the rapid increase of the Hubble parameter for

any finite  po.  Next,  we  make an analogous  plot  for  P0=0

shown in Figure. 7. Figure.6 shows acceleration or rapid infla-

tion for finite po. Figure 7 shows deceleration for po = 0.

Figure 6: Rapid acceleration for po = 4.

https://evega.in/demo/gp-pdf/SMP/www.scimedpress.com
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Figure 7: Deceleration for po = 0.

The qualitative  behavior  of  rapid inflation or  acceleration of

the Hubble parameter in Figure 6, is attributable to the finite

initial  momentum  or  energy  of  explosion.  The  deceleration

shown in Figures 7 is due to zero momentum, allowed in clas-

sical  physics.  Not  so  in  quantum mechanics,  where  the  zero

point  energy  must  be  finite.  Once  an  explosion  at  zero  time

occurs in a big or petit bang, quantum mechanics requires a fi-

nite  value  of  momentum  or  energy  –  which  then  results  in

rapid acceleration. Extrapolating our reasoning to the real uni-

verse,  we  propose  that  rapid  inflation  originates  from quan-

tum  mechanics.  There  is  no  other  alternative,  and  we  pro-

pose, for the first time, we think, that the origin of an inflatio-

nary universe is quantum mechanics. In the history of cosmol-

ogy,  it  has  been accepted that  the origin of  rapid inflation is

unknown [5, 6]. From this study, we claim that quantum me-

chanics must lead to rapid inflation.

Conclusions from the Petit Bang Model

It is of course too much of an extrapolation to say that a sim-

ple  classical  one  dimensional  “universe”  can  say  something

about  a  3d  universe,  a  universe  usually  studied  with  general

relativity. 3d behavior is usually lost when reduced to 1d. For

example, there is no Schwardschild singularity in 1d, the met-

ric is very simple. But perhaps the reverse is not true; extrapo-

lating  from  1d  to  3d  may  be  helpful  in  illustrating  possible

characteristics  of  the  real  universe.  In  our  caricature  of  the

universe,  Hubble behavior with a  unique Hubble constant is

not accurate. We have to live long enough in the real universe

to test its uniqueness.

By simply looking at an explosion with a finite momentum, it

is  possible  to  show  rapid  inflation,  as  shown  in  Figure.  6.

Bringing the initial momentum to zero erases the rapid infla-

tion as  shown in Figure 7.  But  we are  reminded from quan-

tum mechanics that the zero-point energy of a system cannot

be zero, or that po is non-zero. We thus conclude in our sim-

ple  model  that  quantum  mechanically,  the  model  has  no

choice but to explode rapidly. It seems that no one has point-

ed out this possible origin of rapid inflation. We thus propose

that quantum mechanics actually requires a rapid inflation of

any petit or big bang.
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